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Abstract: Coral growth anomalies (GAs) are tumor-like protrusions that are detrimental to coral 

health, affecting both the coral skeleton and soft tissues. These lesions are increasingly found 

throughout the tropics and are commonly associated with high human population density, yet little 

is known about the molecular pathology of the disease. Here, we investigate the metabolic impacts 

of GAs through 1H nuclear magnetic resonance (NMR) metabolomics in Porites compressa tissues 

from a site of high disease prevalence (Coconut Island, Hawaii). We putatively identified 18 

metabolites (8.1% of total annotated features) through complementary 1H and 1H–13C 

heteronuclear single quantum correlation NMR data that increase confidence in pathway analyses 

and may bolster future coral metabolite annotation efforts. Extract yield was elevated in both GA 

and unaffected (normal tissue from a diseased colony) compared to reference (normal tissue from 

GA-free colony) samples, potentially indicating elevated metabolic activity in GA-afflicted 

colonies. Relatively high variation in metabolomic profiles among coral samples of the same 

treatment (i.e., inter-colony variation) confounded data interpretation, however, analyses of paired 

GA and unaffected samples identified 73 features that differed between these respective 

metabolome types. These features were largely annotated as unknowns, but 1-methylnicotinamide 

and trigonelline were found to be elevated in GA samples, while betaine, glycine and histamine 

were lower in GA samples. Pathway analyses indicate decreased choline oxidation in GA samples, 

making this a pathway of interest for future targeted studies. Collectively, our results provide 

unique insights into GA pathophysiology by showing these lesions alter both the absolute and 

relative metabolism of affected colonies and by identifying features (metabolites and unknowns) 

and metabolic pathways of interest in GA pathophysiology going forward. 

Introduction 
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Coral reefs contain a disproportionately large amount of the ocean’s biodiversity and productivity, 

making them one of the most ecologically and economically important ecosystems in the world 

(Odum and Odum 1955; Moberg and Folke 1999). Nonetheless, the status of these ecosystems has 

declined in recent decades due to a combination of local and global challenges (Hughes et al. 

2017). Increasing atmospheric carbon dioxide levels provide a ubiquitous threat to coral reefs due 

to the associated increase in oceanic temperatures and ocean acidification (Hoegh-Guldberg et al. 

2007), while chemical pollution, eutrophication, fishing pressure, and other localized stressors also 

contribute to coral reef degradation (Knowlton 2001; van Dam et al. 2011). Coral disease 

occurrence is commonly linked to human activity (Green and Bruckner 2000) and is influenced by 

both local and global stressors, which may shift host-pathogen interactions in favor of disease 

(Lesser et al. 2007; Burge et al. 2014). Disease outbreaks can devastate impacted coral populations 

(e.g., Aronson and Precht 2001), and the rising prevalence and impact of coral diseases make them 

a substantial threat to coral reef health worldwide (Bruckner 2016). Coral diseases often share 

similar visual indicators, and any given disease may not originate from a single causative agent, 

thus complicating efforts to define disease pathology (Work and Aeby 2006; Lesser et al. 2007). 

However, emerging molecular techniques have the potential to improve diagnostic ability by 

investigating new aspects of coral biology as well as disease pathophysiology and etiology 

(Pollock et al. 2011). 

Coral growth anomalies (GAs) are generally characterized by irregular and accelerated 

growth of a less dense skeleton resulting in a tumor-like mass on a coral colony, with overlying 

tissues having fewer polyps, fewer endosymbiotic dinoflagellates (family Symbiodiniaceae), and 

reduced reproductive potential (Work et al. 2016). Histological descriptions of GAs have shown 
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irregular polyp structure, thickened calicoblatic layer, and increased cell proliferation with 

suppressed apoptosis (Domart-Coulon et al. 2006; Yasuda and Hidaka 2012). These lesions affect 

many coral species and are common across the Indo-Pacific but less common in the Caribbean 

(Work et al. 2016). GAs do not typically lead directly to coral mortality, but their abnormal 

characteristics lower the fitness of impacted colonies and therefore pose an ecological threat to 

coral populations where prevalence is high (Stimson 2011).  

Although the biological and ecological impacts of these lesions have been studied using a 

wide range of methods (e.g., Domart-Coulon et al. 2006; Burns and Takabayashi 2011; Kelly et 

al. 2016; Palmer and Baird 2018; Preston and Richards 2021), the cause and pathogenesis of GAs 

remain unknown. Early theorized causes include ultraviolet radiation (Coles and Seapy 1998, 

Stimson 2011) and pathogenic microorganisms (Kaczmarsky and Richardson 2007). More recent 

molecular investigations have produced contradictory results regarding the involvement of 

oncogenes in GA pathology (Spies and Takabayashi 2013; Zhang et al. 2017; Frazier et al. 2017). 

To date, conclusive evidence to support any of these hypotheses is lacking, however, the 

correlation between human population and GA prevalence (Aeby et al. 2011a, 2011b) strongly 

indicates localized human activities influence GA formation.  

The development of molecular biology –omics techniques has facilitated the investigation 

of biological questions that were previously inaccessible (Joyce and Palsson 2006), and these 

techniques have recently emerged to supplement more traditional approaches in attempting to 

determine disease causative agents (Madsen 2005). One such molecular tool is metabolomics, a 

developing field dedicated to the study of low-molecular-weight compounds (here we refer 

specifically to the water-soluble polar metabolites) in biological samples under predetermined 

physiological conditions. These compounds are essential products and intermediates in 
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biochemical pathways that fluctuate with gene expression and enzymatic activities, making the 

metabolome closely tied to the biochemical phenotype and thus excellent for closely monitoring 

organismal response to perturbations such as disease (Goodacre 2007; Viant 2008; Bundy et al. 

2009). Targeted approaches are generally used in cases where specific, predetermined metabolites 

are of particular interest (Roberts et al. 2012). In other cases, an untargeted approach is common, 

where as many metabolites as possible are measured and biological interpretations are made based 

on the composition and relative abundances of the entire metabolomic profile (Alonso et al. 2015). 

These studies do not necessarily rely on traditional hypotheses to generate valuable data and 

biological information. In fact, many untargeted metabolomics studies naturally result in 

hypothesis formation when unexpected metabolic effects and activities are revealed (Kell and 

Oliver 2004; Bundy et al. 2009). These characteristics make metabolomics a potentially strong 

method for progressing our understanding of coral disease pathogenesis. 

Applications of metabolomics to study stony corals have been limited by challenges 

associated with fitting common metabolomic methods to these unique organisms. The coral 

holobiont presents a complex biological matrix consisting of coral tissues and contiguous skeleton, 

symbiotic dinoflagellates, and associated microbial communities. Therefore, typical best practices 

for metabolomics cannot be applied automatically. Accordingly, many coral metabolomics studies 

have emphasized methods development and optimization (Gordon et al. 2013; Andersson et al. 

2019) or demonstrating the utility of metabolomics in coral research by establishing foundational 

properties of the coral metabolome (Parkinson and Baums 2014; Sogin et al. 2014; Hartmann et 

al. 2017; Sogin et al. 2017; Lohr et al. 2019b; Vohsen et al. 2019). Nevertheless, metabolomics 

methods have been used to investigate the impacts of thermal stress and bleaching history (Sogin 

et al. 2016; Hillyer et al. 2017; Hillyer et al. 2018; Lohr et al. 2019a; Roach et al. 2021; Williams 
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et al. 2021), ocean acidification (Putnam et al. 2016; Sogin et al. 2016), coral/non-coral interactions 

(Quinn et al. 2016; Matthews et al. 2020; Roach et al. 2020), and chemical pollutants (Stien et al. 

2019; Stien et al. 2020) on the coral metabolome. However, metabolomics analyses have not been 

used to investigate the molecular impacts and pathophysiology of coral diseases such as GAs. 

The finger coral Porites compressa is an important reef-building coral in the Hawaiian 

Islands and is common to the reefs of Kaneohe Bay, Oahu (Bahr et al. 2015). The bay has been a 

site of high GA occurrence since the 1990s when they were first observed in P. compressa 

(Domart-Coulon et al. 2006; Stimson 2011). Despite research efforts to characterize the disease, 

the causative agents and specific biochemical impacts of GAs in P. compressa are still poorly 

understood. As a part of a larger endeavor to characterize GAs, P. compressa samples from 

Kaneohe Bay were previously characterized using morphological, elemental and boron isotope 

analyses (Andersson et al. 2020). These efforts identified a novel GA lesion morph and 

demonstrated that the pH was lower in the internal calcifying fluid of GAs compared to healthy 

samples. Here, we expand on this previous work by using an untargeted 1H nuclear magnetic 

resonance (NMR) metabolomics approach to examine GAs from the same P. compressa samples 

in order to further elucidate the metabolic impacts these lesions have on affected colonies. 

Materials and methods 

Sample collection and processing 

Coral samples were collected according to methods from Andersson et al. (2020), a conjoining 

study analyzing the elemental composition of skeletons from the same samples described here. In 

brief, samples (approximately 4 cm in diameter) were collected by hammer and stainless-steel 

chisel directly north of Coconut Island at depths less than 3 m within a 1 hr period in March 2014 

6 



 
 

  

        

          

     

       

          

        

        

    

     

        

   

   

    

     

     

    

    

      

         

       

       

       

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

(State of Hawaii Division of Aquatic Resources Special Activity Permit 2011–1). Samples of three 

visually determined treatment groups were collected from individual diseased and healthy P. 

compressa colonies: coral fragments exhibiting GAs (GA, n = 15), apparently normal fragments 

directly adjacent to (i.e., touching) GA lesions on the same colony (unaffected, n = 15), and 

apparently normal fragments from the nearest, distinct, adjacent colony free of GAs 

(approximately 0.05–2 m away; reference, n = 15) (Fig. 1). Each GA sample was further 

categorized based on the morphology of the GA lesion as either a traditional, bulbous GA (Form 

1) or a less protuberant, novel GA morph (Form 2) that was first described during our 

morphological characterization of these samples (Fig 1b-c) (Andersson et al. 2020). In this way, a 

total of 45 samples were collected from 30 individual coral colonies. Samples were collected into 

Teflon bags and brought directly to the surface where the seawater was poured from the bags, the 

bags were sealed with zip ties, and frozen in liquid nitrogen (LN2) to preserve the physiological 

state of the samples. 

Samples were generally processed following procedures recommended for metabolomics 

analysis of reef-building corals outlined by Andersson et al. (2019). Frozen samples were 

transferred from LN2 and freeze-dried in a VirTis Genesis OX lyophilizer with a Wizard 2.0 

controller (SP Industries Inc., Warminster USA). Subsequent sample handling time and exposure 

to air were limited to reduce contamination and partial rehydration of the soft tissues. In some 

cases, the GA lesion could not be cleanly separated from the surrounding tissues during sample 

collection underwater. In these cases, the GA and unaffected samples were therefore collected 

simultaneously as a single fragment (e.g., Fig 1b) and the GA lesions were separated from 

surrounding unaffected coral by hammer and stainless-steel chisel after lyophilization. Firm-

bristled plastic brushes were then used to collect the dry, soft tissue powders from the coral samples 
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by evenly brushing the entirety of each fragment (~10 s per fragment area). These powders served 

as the primary materials for 1H NMR analysis and were comprised of various parts of the holobiont 

including the coral soft tissues, symbiotic dinoflagellates, associated microbial communities, and 

skeletal powder incidentally removed during brushing. 

Metabolite extraction for 1H NMR metabolomics 

Samples were extracted and analyzed using 1H NMR spectroscopy in four batches on consecutive 

days, with each batch containing three or four randomly selected sets (paired GA and unaffected 

samples from the same coral colony and corresponding reference sample from an adjacent colony) 

of P. compressa tissue powders. Each batch also consisted of a coral homogenate control material 

sample and blank sample to monitor for analytical reproducibility across batches and possible 

method contaminants, respectively. 

Metabolites were extracted from the tissue powders (all samples were standardized to 100 

mg ± 3 mg prior to extraction) using methods modified from Bligh and Dyer (1959) and Wu et al. 

(2008), as recommended for reef-building corals by Andersson et al. (2019). In short, a biphasic 

solvent system consisting of chloroform, methanol, and water at a final ratio of 2:2:1.8 was used 

to extract metabolites from the tissue powders (see Supplemental Text for full details). The polar 

metabolite-containing fraction of each extract was transferred using a glass pipette into a 

microcentrifuge tube and dried in a Vacufuge Concentrator 5301 (Eppendorf AG, Hamburg 

Germany) at room temperature. The mass of the dried metabolite pellet from each sample was 

recorded as the extract mass.  

After extraction, the residual material was then placed in bleach (5.65–6% Laboratory 

Grade Sodium Hypochlorite Solution) and rotated using a Roto-Shake Genie SI-1100 (SP 
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Scientific Inc., New York USA) for 24 h to oxidize and solubilize all remaining organics. After 

bleach was removed, the remaining calcium carbonate powder was then rinsed with water, dried, 

and weighed to record the mass of non-target skeleton that contributed to the tissue powder 

extraction mass. The total amount of tissue extracted from each sample was then estimated by 

subtracting the weight of skeletal contamination from the initial weight of the tissue powder. The 

extract yield (extract mass by total mass of tissue extracted) was also calculated for each sample 

as a normalized estimate of the extract mass. 

NMR spectroscopy data collection and processing 

Dried metabolites were rehydrated in 600 µL of deuterium oxide based 0.1 M sodium phosphate 

buffer containing 1 mM of 3-trimethylsilylpropionic-2,2,3,3,-d, acid sodium salt (TMSP) as a 

NMR chemical shift reference peak. Samples (550 µL) were then transferred to 5-mm NMR tubes 

(NORELL, Inc., Morganton, North Carolina, USA) for 1H NMR analysis. All NMR profiles were 

obtained using a 700 MHz Bruker NMR spectrometer equipped with a TCI cryoprobe and a 

SampleJet autosampler. One-dimensional (1D) 1H NMR spectra were acquired (Topspin version 

3.2) using a nuclear Overhauser effect spectroscopy pulse sequence consisting of 8 dummy scans 

and 256 scans for 65,536 data points with a relaxation delay of 3 s. Spectra were produced from 

the acquired free induction decay (FID) via Fourier transformation. Spectra were referenced, 

phased and baseline-corrected automatically (Topspin version 3.2).  

Two-dimensional (2D) NMR spectra were acquired using a 1H–13C heteronuclear single 

quantum correlation (HSQC) experiment to resolve the spectral overlap in the 1D spectrum (Ross 

et al. 2007; Markley et al. 2017) and confirm structural identification. The HSQC data were 

acquired with 128 scans from 2048 data points from the 512 increments in the F1 dimension. 

Sweep widths of 10.98 ppm (F2) and 180.0 ppm (F1) were used. A relaxation delay of 1.5 s 
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between acquisitions was used along with a refocusing delay of 30 ms. The FIDs were weighted 

using a shifted sine bell function in both dimensions and chemical shifts were referenced to the 

internal TMSP signal. 

Reproducibility and quality control 

Analytical and methodological reproducibility across batches were assessed by evaluation of inter-

batch control material samples. An in-house Orbicella faveolata control material was used for 

these samples to conserve the limited quantities of the experimental coral tissue powders. A full 

description of the O. faveolata control material and the reproducibility of control material and 

experimental spectra can be found in supplementary materials (Supplemental Text; Fig. S1; Fig. 

S2). Samples utilized for method optimization (sample identifications: ‘unaffected-14’ and ‘GA-

14’) (Andersson et al. 2019) were excluded from all statistical analyses. Samples where 

methodological error prevented the measurement of the extract mass (sample identifications: 

‘unaffected-1’ and ‘GA-2’) or the mass of tissue extracted (sample identifications: ‘unaffected-4’, 

‘reference-7’, ‘reference-9’, ‘reference-11’ and ‘reference-14’) were also excluded from all 

statistical analyses and analyses of extract data respectively (Table S1). 

Statistical analyses 

Metrics of metabolite extraction were compared between GA, unaffected and reference samples 

using univariate analyses. Parametric one-way analysis of variance (ANOVA) models with Tukey 

honestly significant difference (HSD) post-hoc tests were conducted to compare the mass of total 

tissue extracted, extract mass and extract yield.   

To facilitate statistical analysis of the 1H NMR metabolomics data, peaks were aligned 

using the Least Square method with a max shift of 0.05 ppm to correct for small variations in 
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chemical shift across samples using NMRProcFlow v1.2 (Jacob et al. 2017). An adaptive, 

intelligent binning procedure was subsequently performed on the spectra from 0.2–10 ppm with a 

signal-to-noise threshold equal to 3:1 (De Meyer et al. 2008). This procedure assigned spectral 

features (peaks) into bins, thereby excluding spectral noise (non-peaks) from downstream 

analyses. Residual water (4.7–5.0 ppm) and other contaminants detected in the blank sample 

spectra (Table S2; Fig. S3) were precluded from binning and bins that contained only noise were 

removed manually. Remaining bins (330 total) were exported as data tables and normalized by 

extract mass (Fig. S4) to enable relative comparisons of metabolomic profiles. For annotated 

features that spanned multiple bins (i.e., two bins containing separate peaks of a putative doublet), 

statistical results were presented from a selected representative bin.  

Multivariate analyses were conducted using Metaboanalyst 4.0 (Xia and Wishart 2016) 

where bins were mean-centered and Pareto-scaled in order to decrease the dominance of bins with 

the largest intensities (van den Berg et al. 2006) prior to principal component analysis (PCA). 

PCAs were used to visually assess the quality of the data and to evaluate trends within and among 

treatment groups. Partial least squares discriminant analysis (PLS-DA) models were used as a 

supervised multivariate approach to help determine bins that differed between treatment groups 

that displayed divergence in PCA. 

Predictive ability of PLS-DA models (Q2) was evaluated with a 10-fold cross validation of 

the first two components, and model quality was further assessed with permutation tests by group 

separation distance with 1000 permutations (Bijlsma et al. 2006; Syzmanska et al. 2012). Twenty 

sub-models were created for each PLS-DA model to evaluate reproducibility of validation metrics, 

and the averages were reported as iterative Q2 (cross-validation) and p-values (permutation tests). 
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Variable importance in projection (VIP) scores were used to rank important bins and were 

calculated for each bin by averaging the scores of the first two components.  

Each set of unaffected and GA samples were collected from the same coral colony; 

therefore, additional multivariate analyses were used in order to increase resolution by focusing 

on unaffected-GA pairs to discount inter-colony variation. An average metabolic change vector 

(AMCV) was calculated from a PCA of intact unaffected-GA pairs by averaging of the difference 

in PCA scores between each unaffected-GA pair. The AMCV was multiplied by the PCA loadings 

of each bin to give a modified loadings score indicating its contribution towards the AMCV 

(Southam et al. 2008). The bins that provided the largest contributions to the AMCV were 

determined as the inflection point of the plotted cumulative sum of the AMCV loadings (Fig. S5). 

Univariate analyses were subsequently used to further elucidate patterns from multivariate 

approaches. Parametric one-way ANOVA models were used to compare relative intensities in 1H 

NMR spectra (normalized by extract mass) for all bins between all three treatments. Additionally, 

paired t-tests were conducted to compare all bin intensities between intact pairs of GA and 

unaffected samples (n = 24). Corrections to account for multiple statistical tests were used to 

separately adjust the p-values from the ANOVA and paired t-tests of the spectral bins, using the 

false discovery rate method (Benjamini and Hochberg 1995) for both corrections. Distribution 

normality and homoscedasticity of variables for all univariate analyses were evaluated graphically. 

Metabolite identification 

A full spectrum annotation was conducted using a representative 1D 1H NMR spectrum and 2D 

1H–13C HSQC spectrum from each of the three treatment groups in order to identify as many 

metabolites as possible in the P. compressa extracts. Metabolites were annotated using Chenomx 

NMR Suite (v8.31; Edmonton, Alberta, Canada) 700 MHz spectral libraries to match peak shape 
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and intensity from the 1D 1H NMR spectra. Additionally, 2D 1H–13C HSQC data were used to 

match resonances from the Human Metabolome Database (Wishart et al. 2007) and the Biological 

Magnetic Resonance Bank (Ulrich et al. 2008) metabolite databases to complement putative 

metabolite identifications from 1D annotations. Spectral features that could not be assigned a 

metabolite identification were annotated as unknowns. Splitting pattern, 1H and 13C chemical shifts 

were also recorded for identified and unknown spectral features. Annotated features were matched 

to the spectral bins used for statistical analyses to facilitate biological interpretations.  

Results and discussion 

Metabolome annotations 

The full spectrum annotation resulted in the identification of 18 (8.1% of total annotated features) 

putative metabolites, 12 (5.6% of total annotated features) of which were supported by 2D HSQC 

resonance chemical shifts (Table 1; Fig. S6), in addition to 204 unknown spectral features (Table 

S3). All putatively identified metabolites were present in all three treatment groups. Previous 

annotations of P. compressa metabolomes resulted in only two putatively identified compounds 

(Sogin et al. 2014), both of which (alanine, glucose) were also found in our spectra. In both cases, 

glucose was present in low concentrations compared to other features in the metabolomic profile 

of P. compressa (Fig. S6) (Sogin et al. 2014). Glucose is an energetically and physiologically 

important coral metabolite (Burriesci et al. 2012; Ochsenkuhn et al. 2017; Hadaidi et al. 2019) that 

is commonly identified in metabolomic profiles of other coral species (e.g., Putnam et al. 2016; 

Sogin et al. 2016; Hillyer et al. 2017). In contrast to P. compressa, glucose is one of the most 

abundant metabolites measured in other coral species such as Acropora aspera (Hillyer et al. 

2017). Furthermore, known coral-associated metabolites such as trehalose (Hagedorn et al. 2015), 
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floridoside (Ochsenkuhn et al. 2017), and arabinose (Hadaidi et al. 2019) were not visible in our 

P. compressa spectra at all. Reasons for such species-specific differences in these metabolites are 

unclear but will be of interest going forward. 

Previous NMR-based coral identifications have typically relied on matching 1D 1H shifts 

to metabolite databases, resulting in level 2 (putative) identifications as classified by the 

Metabolomics Standards Initiative (Sumner et al. 2007). Level 2 identifications are generally 

susceptible to misidentification because they do not utilize authentic chemical standards, and 

identification of coral metabolites is further limited by the scarcity of metabolite database 

resources devoted to non-model organisms. Therefore, to increase annotation rigor, we annotated 

as many features as possible from the entire spectrum while implementing complementary 2D 1H– 

13C HSQC data, in addition to 1D 1H spectra. 

Although still producing level 2 identifications, this approach increased the confidence of 

metabolite identity by providing crucial information regarding atom connectivity. The 18 (8.1% 

of total annotated features) putative metabolites we identified are comparable in number to other 

NMR-based coral metabolomics studies (e.g., 3 – 26 identifications (11.1 – 28.6% of total 

annotated features, 1D only) (Sogin et al. 2014; Putnam et al. 2016; Lohr et al. 2019b). NMR-

based studies typically seem to report fewer putative metabolite identifications compared to their 

mass spectrometry-based counterparts, which generate high feature numbers despite similar 

putative identification capacity for both analytical methodologies (e.g., 99 – 271 identifications 

(11.2 – 22.3% of total annotated features) (Sogin et al. 2016; Hillyer et al. 2017; Lohr et al. 2019b). 

Annotation results are also influenced by differences in the number and type of coral species 

analyzed, ionization and detection strategy of the measurement tool, and metabolite identification 

rigor. In comparison, 204 features from our spectra were annotated as unknowns, including many 
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of the features with the highest relative intensities (e.g., Unknowns #72, 73, 58, 82, 68, 71) (Table 

S3; Table S4), further demonstrating the need for improved metabolite databases for non-model 

organisms such as coral. 

While all levels of metabolite identification can be useful for preliminary probes of coral 

metabolism, increased identification confidence is necessary to establish foundational knowledge 

of coral metabolomes and to generate high-quality metabolic pathway hypotheses to be tested. 

Therefore, our more rigorously annotated putative metabolites provide increased confidence to the 

metabolic pathway analyses discussed in the following sections. Furthermore, our annotation 

efforts bolster the amount of high-quality metabolite data available in this developing field, which 

can be used as a reference to aid annotation efforts in future studies. This will help the field 

transition from utility-based to more experimental studies, with critical biological interpretations 

and future research directions (e.g., targeted studies) depending largely on such identifications. 

GA impacts on coral metabolism 

We used two approaches to assess differences in metabolism between P. compressa samples. (1) 

The extract yield was used to evaluate the overall metabolic output of the samples. Additionally, 

(2) the composition and relative abundance of measured metabolites (i.e., metabolomic profiles) 

in GA, unaffected and reference samples were used to assess GA impacts on coral metabolism and 

specific metabolic pathways. The use of the extract data provided complementary metabolic 

information regarding the absolute metabolism of these samples that would be overlooked if only 

the relative comparisons of normalized metabolomic profiles. It should be noted that these masses 

consist of the entire suite of metabolites (and potentially other process carryover contaminant 

molecules) contained in the extract polar fraction. Therefore, while differences may provide a 

general overview of metabolic activity, discerning the effects of specific metabolites or metabolite 

15 



 
 

   

  

     

         

       

    

  

  

    

      

        

     

     

  

  

   

     

    

 

      

    

       

    

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

classes is not possible using this method alone. Furthermore, this method is confounded by any 

inherent differences in extraction efficiency between GA and healthy tissues. 

The extract yield was nearly identical for unaffected and GA samples (Tukey HSD post-

hoc p = 0.983); however, for reference samples it was approximately 66% and 70% that of 

unaffected and GA samples respectively (ANOVA F2,33 = 5.106, p = 0.012) (Fig. 2a; Table S5). In 

order to sustain their elevated skeletal and tissue growth (Domart-Coulon et al. 2006), GAs rely 

on nutrient imports from surrounding unaffected tissues (Stimson 2011) as well as local resources 

re-allocated from other vital biological functions such as reproduction, energy storage in the form 

of lipids, and internal pH regulation (Domart-Coulon et al. 2006; Palmer and Baird 2018; Sale et 

al. 2019; Andersson et al. 2020). Our results seemingly indicate an increase in overall metabolic 

activity in both GA lesions and apparently healthy (unaffected) areas from GA-afflicted colonies 

compared to GA-free colonies. This increased metabolic activity in GAs may be linked to the 

energy burden the lesions impose on affected colonies and further demonstrates that the metabolic 

impacts of GAs are not limited to the lesions themselves. 

Metabolomic profile differences were evaluated through PCA of all samples, which 

showed large amounts of overlap between GA, unaffected, and reference treatments, with 

particularly high overlap between unaffected and reference samples. Therefore, PCA scores alone 

were not useful for distinguishing to which treatment group a given sample belongs (Fig. 2b). 

Isolated comparisons across treatments (GA–unaffected, unaffected–reference, GA–reference) 

again showed high similarity of samples in PCA (Fig. S7a-c), indicating the extent of GA impacts 

on metabolomic profiles is low compared to other sources of variation, such as differences between 

individual coral colonies. These results contrast with the clear morphological, histological, and 

physiological differences previously documented in P. compressa GAs (Domart-Coulon et al. 
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2006). Furthermore, other stressors such as temperature and coral-neighbor interactions generally 

do result in group separation of coral metabolomes in PCA or principal coordinates analysis plots 

(Quinn et al. 2016; Hillyer et al. 2017). 

PCA of only GA and reference samples showed group separation along the second 

principal component (PC 2; 25.6% explained variance (EV)) (Fig. S7c) and comparison of these 

two sample types therefore warranted further investigation using supervised PLS-DA. Validation 

of the PLS-DA model comparing GA to reference samples (Fig. S7d) indicated an effect of 

treatment (p = 0.034 ± 0.001; mean ± SE), but the predictive power (Q2 = 0.394 ± 0.013; mean ± 

SE) of the model was low (Syzmanska et al. 2012). Therefore, a conservative VIP threshold (VIP 

> 2) (i.e., Lohr et al. 2019b) was used to identify 13 important features from the model, all of 

which were annotated as unknowns (Table S6). 

PCA plots were also used to assess differences in metabolomic profiles between bulbous 

Form 1 GAs and the less protuberant Form 2 GAs. Form 1 samples generally had less metabolic 

variation and appeared to be slightly different compared to Form 2 samples in PC 2 (22.0% EV) 

(Fig. S8). However, small sample size and imbalanced replication of Form 1 (n = 9) and Form 2 

(n = 3) lesions precluded the use of meaningful univariate or supervised multivariate analyses here. 

Therefore, despite consistent macro-morphological differences and preliminary evidence for trace 

elemental and metabolomic differences (Andersson et al. 2020), more research is necessary to 

confirm these two morphs as distinct P. compressa GA lesions.  

Subsequent univariate comparisons across GA, unaffected, and reference samples showed 

average spectral intensities between groups were similar for nearly all features and did not 

highlight any new features of interest. However, Unknown #86 at 3.37 ppm did have higher 

intensities in both unaffected and reference compared to GA samples (ANOVA F2,38 = 13.321, p 
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= 0.014) (Table S4), supporting the importance of this feature in the PLS-DA model (VIP = 2.34) 

(Table S6). Full statistical results for all 330 bins are presented in Table S4. Collectively, these 

results showed that any detectable, systematic differences GAs imposed on coral metabolomes 

were largely confounded by relatively high inter-colony variation among the samples.  

Individual coral species generally have distinct and relatively consistent metabolomic 

profiles (Sogin et al. 2014; Putnam et al. 2016; Andersson et al. 2019), yet variation among 

individuals of the same species is sufficient to allow for the distinction of unique genotypes using 

PCA (Lohr et al. 2019b). As we have demonstrated above, this variation can obscure systematic 

differences in the presenting phenotypes. A similar phenomenon was observed during our previous 

elemental characterization of these samples, where differences in certain trace elements (e.g., 

Mg/Ca, U/Ca, Va/Ca, Mo/Ca) and internal pH were only apparent once paired analyses of 

unaffected and GA samples were implemented (Andersson et al. 2020). Therefore, we continued 

our characterization of GA metabolomic profiles below by capitalizing on the unique paired status 

of the GA and unaffected samples collected from the same colony (genotype), which allowed for 

more explicit investigation of disease-related metabolic shifts by controlling for inter-colony 

variation. 

Analysis of paired metabolomic profiles 

Visual inspection of the PCA for only paired GA and unaffected samples (combined 57.2% EV 

for PC 1 and PC 2) again showed considerable group overlap (Fig. 3). However, a consistent 

pattern can be observed between each paired set of samples, with all unaffected samples (except 

sample 7U) having a lower PC 2 (20.9% EV) score than their respective GA sample. This indicated 

a consistent metabolic shift between unaffected and GA samples, which was obscured by the 

relatively larger inter-colony variation. The observed variation between individual unaffected–GA 

18 



 
 

      

   

      

     

  

    

       

       

   

     

         

     

     

    

     

     

         

   

         

       

       

      

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

pairs could be due to a variety of genetic, environmental, or disease-progression factors. Therefore, 

collecting additional genetic data (e.g., DNA or RNA) or controlling environmental variables (e.g., 

diet, neighbor interactions) may help interpret this variability in future GA studies.  

An AMCV was calculated to determine which features were primarily responsible for 

driving the constant shift between paired samples in the PCA scores plot (Fig. 3). Modified 

loadings scores were created to determine the contribution of each feature towards the AMCV 

(Fig. S9) and the 41 features with largest contribution to the AMCV (see Fig. S5) were highlighted 

in Table 2, while loadings for all features were listed in Table S4. Paired t-tests separately 

identified a total of 61 features that differed between unaffected and GA samples (paired t-test p < 

0.05) (Table S4). Of the 41 most influential AMCV features, 29 differed according to univariate 

analyses as well (p < 0.05) (Table 2). A combined total of 73 unique features were identified by 

either multivariate or univariate analyses and these trends were confirmed visually using the raw 

data (e.g., Fig. 4; Fig. S10; Table S4). These results highlight the benefits of collecting and 

analyzing paired samples in coral metabolomics research when possible, where inherent 

metabolome variation between individual coral colonies can be a challenge. 

Of these features, 1-methylnicotinamide, trigonelline (GA high), betaine, glycine, and 

histamine (GA low) were putatively identified (Table 2). Betaine and glycine were influential in 

the AMCV, while univariate analyses provided evidence of differences between GA and 

unaffected samples for betaine (t11 = –2.685, p = 0.060), glycine (t11 = –3.403, p = 0.032), histamine 

(t11 = –2.966, p = 0.046), trigonelline (t11 = 3.077, p = 0.041) and 1-methylnicotinamide at 8.86 

ppm (t11 = 3.342, p = 0.032) and 8.95 ppm (t11 = 3.203, p = 0.036) (Table 2). It should be noted 

that glycine and Unknown #102 overlapped in the same statistical bin, although both features 
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appeared to be low in GA compared to unaffected samples by direct spectral comparison (Fig. 

S10). 

Many of the most influential features identified by both the unpaired (Table S6) and paired 

(Table 2) analyses were annotated as unknowns, restricting pathway analyses to only a handful of 

compounds (see Supplemental Text for in-depth comparison of unpaired and paired results). These 

unknown features are of interest regarding GA pathophysiology and more effort is therefore 

needed to identify important unknown compounds through isolation and spectroscopic techniques. 

Nonetheless, using known biochemical activities of identified compounds can provide a useful 

starting point for generating testable hypotheses regarding specific metabolite activity or metabolic 

pathways that may be associated with GA pathophysiology in P. compressa. Although differences 

in the five putative metabolites were difficult to detect without the advantage of paired unaffected 

and GA samples, even subtle changes in tightly regulated metabolites may be physiologically 

important. Therefore, the features contributing to this shift are good candidates for providing 

insights into the molecular pathology of GAs, and preliminary pathway analyses of putatively 

identified metabolites are discussed below. 

Metabolic pathway analyses 

Betaine is an important organic osmolyte (Ashraf and Foolad 2007) and has been shown to 

accumulate in marine invertebrates in response to environmental stress (Liu et al. 2011; Cappello 

et al. 2013), including in other reef-building coral species (Williams et al. 2021). However, we 

observed low betaine levels in GA samples despite their abnormal condition that could be expected 

to trigger such an accumulative stress response. Alternatively, this may be explained by betaine 

accumulating in the unaffected tissues as a stress response to the directly adjacent GA lesions, or 
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by a decreased influx of symbiont-derived betaine in GAs due to their lower abundance of 

symbiotic dinoflagellates (Domart-Coulon et al. 2006).  

Glycine is an amino acid precursor (Amelio et al. 2014) that is highly abundant in the 

skeletal organic matrix secreted by corals (Puverel et al. 2005). The organic matrix is thought to 

act as a biological framework during skeleton formation, and the glycine composition of this 

matrix differs between corals with distinct skeleton morphologies (Puverel et al. 2005). This 

indicates that the amino acid composition of the organic matrix may affect skeleton structure 

and/or morphology, thus the decreased levels of glycine we measure in GAs may be linked to their 

irregular skeletal characteristics. Our previous elemental work on these samples indicates that GAs 

allocate resources away from the pH regulation of their calcifying fluid to sustain their rapid 

growth (Andersson et al. 2020). If this is the case, GAs may also allocate energy away from other 

aspects of skeletogenesis, such as glycine synthesis for the organic matrix. Alternatively, it may 

be that the faster extending skeletons of P. compressa GAs (Domart-Coulon et al. 2006) are 

depleting glycine levels, thereby contributing to the low glycine we measure in GA compared to 

unaffected samples. 

Betaine and glycine together belong to a larger set of biochemical pathways involved in 

glycine/serine metabolism, specifically the oxidation of choline to glycine, which can then be 

interconverted with serine (Fig. 5). The decreased levels of betaine and glycine indicate a 

downregulation in the choline oxidation pathway in GAs. In the cnidarian model Aiptasia, choline-

derived synthesis of glycine is upregulated in non-symbiotic individuals, a proposed indicator of 

heterotrophic feeding (Cui et al. 2019). The lower choline oxidation we theorize in GA samples 

would then indicate a decrease in choline-derived glycine (Fig. 5) and thus a decreased proportion 

of heterotrophic feeding in GA lesions.  
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GAs in P. compressa contain fewer symbiotic dinoflagellates compared to unaffected 

tissues (Domart-Coulon et al. 2006), so it might be expected that these lesions increase 

heterotrophic feeding to compensate for the assumed decreased influx of photosynthates. 

However, unlike some coral species, P. compressa does not increase heterotrophic feeding to 

compensate for the loss of symbionts during bleaching (Grottoli et al. 2006), which may explain 

why feeding is seemingly not increased in GAs. Additionally, the abnormal polyp characteristics 

of GAs may restrict their ability to capture prey. For example, P. compressa GAs have fewer and 

more dispersed polyps (Domart-Coulon et al. 2006; Andersson et al. 2020), which may reduce 

heterotrophic feeding potential. If true, an inability for heterotrophic feeding to compensate for the 

loss of symbiont-derived resources in GA lesions may contribute to the energetic burden that GA 

tissues place on the rest of the coral holobiont to sustain their growth. Increased skeletal Mo/Ca 

and V/Ca in these same GA samples may indicate decreased nitrogen fixation in the GA holobiont 

as well (Andersson et al. 2020), which would only exacerbate GA reliance on external energy 

sources. 

The choline oxidation pathway is also linked to DNA methylation through the 1-carbon 

cycle (Fig. 5). DNA methylation often functions to inhibit expression of unwanted genes 

(Niculescu and Zeisel 2002) and is a known mechanism for phenotypic plasticity in corals as an 

acclimatization response to environmental stress (Putnam et al. 2016). Moreover, metabolomics 

analysis of benign hepatic tumors in flatfish revealed decreases in both choline and glycine 

(Southam et al. 2008), and choline-deficient diets can induce hepatocellular carcinomas in rats 

(Nakae et al. 1992). Although these results do not necessarily support the classification of GAs as 

tumors (malignant or benign), the carcinogenic potential of this pathway in coral GAs warrants 

further investigation. Based on these untargeted results, we hypothesize that heterotrophic feeding, 
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the oxidation of choline to glycine, glycine levels in the skeletal organic matrix, and epigenetic 

DNA methylation are decreased in GA lesions relative to surrounding unaffected tissues. We 

further theorize that these are concurrent results related to GA formation and/or growth, potentially 

all stemming from decreased heterotrophic feeding, rather than mutually exclusive GA processes. 

Therefore, metabolites belonging to these pathways are of interest for GA pathophysiology going 

forward and could be the focus of future validation and targeted studies to further elucidate GA 

impacts. 

Wider GA pathophysiology perspectives 

Our study is the first application of untargeted metabolomics analyses to study coral disease in 

situ, and thus offers a unique perspective into the biochemical impacts of GAs in P. compressa. 

These results are a part of a larger investigation of GA pathophysiology that includes 

morphological descriptions and skeletal trace element measurements of these same coral samples. 

Elemental and morphological results showed decreased pH of GA calcifying fluid and a porous 

and fragile GA skeleton respectively, which we theorized to be the result of energy re-allocation 

away from internal pH regulation to facilitate elevated GA tissue growth (Andersson et al. 2020). 

Our metabolomics results expand on these findings by providing additional demonstrations of 

abnormal energetics (i.e., increased unaffected and GA extract yield, metabolomic profile 

differences between unaffected-GA samples) and by identifying specific metabolites and 

metabolic pathways of interest that may be altered in this irregular GA metabolism. Combined 

results from these studies seemingly indicate that GA metabolism is unbalanced towards 

promoting rapid lesion growth, often at the expense of other essential biological processes and the 

surrounding unaffected tissues, despite evidence that traditional autotrophic and heterotrophic 

energy sources are compromised in GAs. Both studies also demonstrate the utility of analyzing 
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paired GA and unaffected samples when studying GAs. Overall, this work broadly advances our 

understanding of GA pathophysiology, particularly in P. compressa. Further work on GAs could 

aim to validate metabolomics results with targeted measurements of important metabolites and to 

extend GA characterization to additional analytical methods (e.g., mass spectrometry-based 

metabolomics, transcriptomics, stable isotope analyses to assess heterotrophic nutrition, DNA 

methylation assays, 16S rRNA gene sequencing) to provide a more comprehensive comparison of 

diseased and healthy holobiont functioning. 
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Figure Legends  
 
Figure 1. Overview of  Porites compressa  sampling strategy  and different  sample types that were  

collected.  (a) Diagram depicting  a P. compressa  growth anomaly  (GA) and  unaffected sample pair  

collected from a GA-afflicted colony (red box) and corresponding reference sample collected from  

the nearest, distinct, adjacent  P. compressa  colony (green box). Representative photos  of  (b) Form  

1 GA lesion and paired  unaffected sample, (c) Form 2 GA lesion  and paired unaffected sample, 

and (d) reference coral  sample taken in the laboratory  after lyophilization. (b-d) Dashed red  

outlines indicate GA lesions and unmarked areas show apparently normal  (unaffected or reference)  

coral; black bars indicate 1 cm.  

Figure 2.  (a)  Average extract  yield  for growth anomaly  (GA; n =  13), unaffected  (n  =  12)  and 

reference samples  (n  =  11). Points indicate  group  mean  and  error bars indicate standard error of 

the mean.  Displayed p-value is from one-way analysis of variance  model, p-values for specific  

post-hoc  comparisons are listed in Table S5. (b) Principal component analysis  scores plot of  the  

first two principal components (PC 1 and PC  2)  for  GA  (n  =  13), unaffected (n  =  13), and reference 

samples (n  =  15). Ellipses indicate 95%  confidence region of the multivariate t-distribution for  

each group.   
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Figure 3. Principal component analysis (PCA) scores plot of the first two principal components 

(PC 1 and PC 2) for paired growth anomaly (GA; n = 12) and unaffected samples (n = 12). Blue 

lines indicate the difference in PCA scores between each unaffected–GA pair and the bold arrow 

indicates the average metabolic change vector from unaffected to GA samples. Ellipses indicate 

95% confidence region of the multivariate t-distribution for each group. 

Figure 4. Boxplots showing relative intensity of growth anomaly (GA; n = 12) and unaffected (n 

= 12) samples of selected features of interest based on average metabolic change vector loadings 

(Table 2) with corresponding false discovery rate corrected p-values from paired t-tests. Boxes 

indicate the group interquartile range (IQR) and the horizontal line within each box indicates the 

group median. Whiskers extend above and below the upper and lower boundary of the boxes to 

the group maximum and minimum (up to 1.5 × IQR) respectively. Relative intensities for the 

individual samples in each group are shown as the points overlapping with the boxplots. Features 

are listed in descending 1H nuclear magnetic resonance (NMR) chemical shift (ppm) order. 

Corresponding overlapped 1H NMR spectra for these features are shown in Fig. S10. 

Figure 5. Flow chart showing selected reactions relating to glycine and serine metabolism, 

focusing on the oxidation of choline to glycine. Black arrows indicate metabolic reactions; blue 

ovals indicate specified metabolites; green ovals indicate metabolites with decreased abundance 

in growth anomaly relative to unaffected samples. Gray box indicates the enzyme betaine-

homocysteine S-methyltransferase (BHMT), which is responsible for catalyzing the conversion of 

betaine and homocysteine to dimethylglycine and methionine. DMG = Dimethylglycine; SAM = 

S-adenosylmethionine; SAH = S-adenosylhomocysteine.  
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